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The CASTOR (complex Alfeh spectrum of toroidal plasmas) code computes
the entire spectrum of normal-modes in resistive MHD for general tokamak confi-
gurations. The applied Galerkin method, in conjunction with a Fourier finite-element
discretisation, leads to a large scale eigenvalue prol#gm ABx, whereA is a
nonself-adjoint matrix. © 1998 Academic Press
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I. INTRODUCTION

The gross macroscopic properties of a fusion oriented device, such as JET, cor
ing equilibrium, stability, and transport are of special interest. The magnetohydrodyn:
theory (MHD) combining fluid equations and Maxwell's equations describes this ma
scopic behaviour. The role of ideal MHD in magnetic fusion is in the first place to discc
magnetic geometries with favourable equilibrium and stability properties. Fast global i
instabilities have to be avoided. Nonideal effects allow development of slower and we
instabilities leading to enhanced transport and violent disruptions. Since MHD charact
tics are observed in most experimental phenomena, a detailed knowledge about the
and unstable MHD solutions is required not solely stability limits. The theory of equilik
and linearised motion around an equilibrium configuration has, therefore, beenin the ¢
of theoretical investigations over the years. The most complete picture is obtained by n
of a normal-mode analysis, which yields the various temporal and spatial scales inher:
the specific MHD model used. The MHD spectrum, especially theedfedntinuum, has
played an important role in the understanding of instabilities and wave heating via resc
absorption.

In this paper we adopt the picture of a tokamak equilibrium given by ideal MHD w
isotropic pressure, i.e. by B = Vp, and subjected to dissipative perturbations. Tt
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viewpoint is justified by a hierarchy of time scales. Since finite conductivity causes t
plasma to break away from the magnetic field and prompts unfavourable changes of
magnetic topology with large and small islands leading to ergodic fields, the resistive per
bations have to be studied even for large but finite conductivity. The approach incorpor:
a flux coordinate system based on the specific equilibrium, in order to model thenAlfv
branch accurately. Clearly, the An’branch of the spectrum is the most relevant part fc
magnetic confinement. The name “CASTOR,” i.e. complex &thspectrum of toroidal
plasmas, given to the new normal-mode code reflects this viewpoint.

The finite-element method provides a flexible and highly accurate numerical approxir
tion. In dissipative MHD this prompts a nonvariational form with general non-Hermitia
matrices and complex eigenvalues. The discretisation has then to be chosen careful
order to avoid spurious nonphysical oscillatory solutions. A “pollution-free” approxime
tion has been established. Powerful algorithms exist for the solution of the linear eigenve
problem. The specific difficulty for us is given by the large dimensions of the system whi
indicates that iterative methods, such as vector iteration, preserving the sparseness
matrices are preferable. Such a scheme can be extended to a shifted Lanczos algo
for mapping out specific parts of the spectrum. The storage of large-scale matrices \
(1-10)x 10° nonzero elements can easily be arranged if external storage is addressed.
linear algebra algorithms involved in the eigenproblem can be tailored to reach peak |
formance by fully utilising vectorisation and parallelism as discussed in Refs. [1, 2].

The paper is organised as follows: The physical model appropriate to simulating
dissipative plasma behaviour is presented in Section Il. The tokamak equilibria conside
are described by ideal MHD and define specific nonorthogonal flux coordinates. Sec
Il contains the numerical method. The resistive MHD equations are solved in their we
form by applying the finite-element method. This leads to a large-scale complex eig
value problem. The derivation of the corresponding matrix elements is outlined in Sect
IV. Applications displaying the accuracy and efficiency of the numerical scheme are p
sented in Section V. Finally, Section VI contains the discussion and conclusion. The ma
elements are listed in Appendix A and the equilibrium quantities in Appendix B. Details
the finite elements employed are given in Appendix C.

II. PHYSICAL MODEL

The single-fluid MHD equations in normalised, dimensionless form read:
continuity,

)
% L V(pw) =0; (2.1)
ot
momentum,
d .
m,0<at +y-V>y=—Vp+J_x§; (2.2)
energy,

p(3+y-v>T=<y—1>[—pv-y—v-g+n12] (2.3)
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with y = 5/3 the ratio of specific heats and Ohm’s law (in simplified form),
E+v xB=nj, (2.4)

where gdenotes the heat flux angdis the resistivity. This model relates the density
velocity v, scalar pressure p, temperature T, the magnetic (electric) figdgl, BAnd the
current j In addition, we have

MaX\;veII,
B _ -V xE (2.5)
at = '
j=VxB, (2.6)
ideal gas law,
p=pT. (2.8)

The basic uncertainties in this model with respect to modelling plasmas in a fusion ree
are given by the omission of kinetic effects in the pressure tensofli-e0, and by the
neglect of the electron response in Ohm’s law. This formulation based on density
temperature as variables is well suited for the study of thermal instabilities with nonz
parallel and perpendicular heat conductivities in the heat flux (see conclusions). Foi
discussion of the numerical scheme the heat conductivity is set to zero throughout
paper.

The standard model applied to equilibrium and stability begins with a static0)
steady-staté€d /ot = 0) equilibrium which reduces to

(V xBg) x Bo= Vpo,

2.9
V-Bo=0. (9)

The condition thatthe magnetic field be divergence-free isincorporated in the represent
Bo= V¢ x VY + F(y) Ve, (2.10)

whereys denotes the poloidal flux and F is the poloidal current profile. The equilibriu
geometry is presented in Fig. 1. Cylindrical coordinates R, are used and axisymmetry
implies that the equilibrium quantities do not depen@oFRorce balance leads to the Grad-
Shafranov equation foy defining a nested set of closed magnetic surfaces. The plas
behaviour is quite anisotropic with respect to the directions parallel and perpendiculz
Bo. Therefore itis essential to utiligeas a radial coordinate. Such a flux coordinate syste
¥, 0, ¢ is characterised by its Jacobian,

J1=vVy x Vo .-V, (2.11)

wheref denotes an angle in the poloidal direction, e.g. a polar angle. A straight field |
coordinate systent, x, ¢ is characterised by a constant ratio,

BY/Bj = A(y). 2.12)



274 KERNER ET AL.

z
Pas AN
SRS SN
"“‘l.i\ N\ "O“s‘\\\‘\\ ‘
o IR RN
&> {‘Eiiggg‘g‘!%{‘g‘g:‘..n A 1’i§§§§é§§""’?€‘g‘=‘\\
soccatss ozl
& 7
H &g- \ ";
: &S

FIG. 1. The poloidal cross section of a typical JET equilibrium displaying the closed contours of equal flL
s=./¥/¥s; R, ¢, Z, denote cylindrical coordinates. The vacuum region outside the last closed flux surface exte
up to an arbitraily shaped wall (not shown): (a) lines of constant polar angle (ofdéhe soordinates). (b) lines
of constant anglg (of the straight field lines coordinates)s ¢, which is constructed by integration or=sct).

where g denotes the safety factor. Then the operagor\Bhas the representation

3 ) .
JBy -V = (q(w)ﬁ + @) = i(nq(y) + m) (2.13)

with n and m denoting the toroidal and poloidal wave numbers. Consequently, thep
coordinate system is uniquely defined by the choice

5_ Reaw)
F(y)

The theory of linearised perturbations adopts an expansion around such an equilibr
and linearises the equations. This is then the place where dissipation is taken into acc
The justification for this procedure is given by estimating the time scales of interest. In |
limit of small resistivityn the equilibrium profile evolution, proportional ig is very slow,
whereas the perturbations grow on a faster time scale typically of the order of

(2.14)

t~n¥® or '3 (2.15a)
where the resistive layer scaling is
rn~n?> or p*® (2.15b)

is quite small.

The relevant stable waves such as Aliwvaves experience only small damping. Thus
we can adopt the standard model.

All quantities are expanded around the equilibrium in the form

y(r. t) = yo(n) + €'y(), (2.16)

where we keep the subscript 0, but we omit the subscript 1 for the perturbations y.
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Here, X is the eigenvalue. The imaginary partio€orresponds to oscillatory behaviour,
while a negative real part yields damping and a positive real part yields an exponent
growing instability. As it will become apparent that the correct treatment of the magne
field perturbation under the influence of finite resistivity is essential, we will focus on
extension of the scheme to fully two-dimensional equilibria with only resistivity taken ir
account. No perturbation of the resisitivity is included here.

With resistivity g the equations for the perturbed quantities (perturbed velocity), T,
and bread

Ap = =V - (pol), (2.17a)
Apod = =V (poT + Top) + (V x Bg) x b+ (V x b) x By (2.17b)
ApoT = —pou- VTo— (¥ — DpoToV - u+ (¥ — D[2noV x By - V x b], (2.17c)
Ab=V x (UuxBy—noV x b). (2.17d)
The dissipated energy in (2.17c) can be neglected, as is done usually.

The conditionV - b=0 is satisfied if B, is divergence-free. The vector potential is
introduced by

b=V xa and E= -\a (2.18)

where the scalar potential is set equal to zero.
The induction equation now reads

ra=UxBy—nV xVxa (2.17¢)

and bis replaced by x ain (2.17b). It will be shown in Section Ill that this formulation is
well suited for the numerical approximation of the entire spectrum. Thus the system (2.1
(2.17b), (2.17c), and (2.17e) is the basis of the CASTOR code.

The boundary conditions at a perfectly conducting wall are

n-u=0 n-b=0 nxE=0, (2.19)

where nis the outward pointing normal vector.
When a plasma—vacuum—wall system is considered, the perturbed vacuum field c:
expressed by a potential,

b, = V. (2.20)
Maxwell equations (2.6), (2.7) then imply
V2¢, = 0. (2.21)

The ideal MHD(n = 0) boundary conditions indicate that the normal magnetic field au
the total pressure = p+ 1/2B? are continuous at the perturbed plasma—vacuum interfz
andn- b, = 0 at the wall. In the case where the equilibrium magnetic field is continuc
across the plasma boundary the pressyfalfs to zero at the boundary. Then the boundar
conditions assume the form

b-n=h,-n (2.22)
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71 =P+By-b=By, by, (2.23)

where the perturbed pressure is given by BT + pTp.

For finite resistivity at the boundary surface currents are no longer allowed in the plas
perturbations and, therefore, all three components of the perturbed magnetic field are
tinuous. This gives rise to two additional resistive boundary conditiomnsrB= B,, x n,
which for equilibria with zero surface currents implies

nxb=nxbh,. (2.24)

These conditions are incorporated in the surface terms which occur by constructing
weak form in Section IV.5.

At the magnetic axis the boundary conditions are given by the regularity condition
axis.

IIl. NUMERICAL METHOD

The method adopted for numerical solution is subjected to two different requiremer
First, it should apply to general configurations in solar and stellar plasmas as well
to fusion-relevant tokamak configurations. Second, it should be easily extended to incl
various forms of dissipation. Such requirements exclude elimination of specific compone
ofthe perturbation and prompt a general solution of the system (2.17). Hence we are pref
to solve large-scale systems. Thereby, fulluse can be made of the theory and of the algori
available in linear algebra for solving the eigenvalue problem (see Kerner [1]). It has bt
shown previously that the corresponding systems can be solved for efficiently and accur:
in plasmas with cylindrical symmetry [3].

Itis recalled that the ideal MHD spectrum typically splits into three branches, hamely 1
fast magneto-acoustic waves, the Afvivaves, and in the small pressure limit the soun
waves with a large ratio of the largest to smallest eigenvalue. This indicates that special
is necessary to ensure correct and accurate numerical representation of the entire spec

The framework for numerical solution of the dissipative MHD equations is given by t
finite-element method.

1. Discretisation

For tokamak systems it is advantageous to apply a Fourier finite-element discretisa
in the flux coordinate system g, ¢, adopted to the specific axisymmetric equilibrium
considered with

s=¥/¥s, 0<s<1, (3.1)
and
_dy
f(s) = ds 2syrs (3.2)

with ¥s the flux on the boundary.
The Jacobian is

J=f(59R%q(s)/F(9). (3.3)
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The perturbations introduced in (2.16) are represented by the ansatz

m=o0

y(r) = exping) > y_(s) expimy). (3.4)

m=—oo

The radial dependence ofyexpressed by a linear combination of local expansion or shz
functions R(s):

Ns

Ym(S) =Y Xm)ihy(). (3.5)

j=1

The expansion coefficientgy,); are determined numerically, together with the eigenvalt
and they form the eigenvector.

The normal-mode problem exhibits very different spatial and temporal scales, as 1r
fested in the different branches of the spectrum and in the very localised, almost sing
resistive instabilities. Special care is therefore required in choosing the appropriate nu
ical approximation for the different components of the perturbations. Optimal numer
approximation of the entire computed spectrum is obtained if the discretisation is chc
to satisfy two constraints in every point,

=

(3.6a)

V.u=0
V.b=0. (3.6h)

(=

When unphysical coupling between the fast magnetosonic and themfiaves occurs
the Alfvén spectrum is highly distorted numerically. In toroidal systems the fast modes
suppressed in leading order in inverse aspect ratio if the perturbation satisfies

V- (u /R =0. 3.7)

This implies that pure Alfeh waves are represented correctly only if the discretisati
satisfies condition (3.7) exactly, independent of the mesh size.

In ideal MHD the linearised system can be cast into a variational problem for the ene
in the Lagrangian displacemeft which through u= 3£ /9t corresponds to the velocity.
This approach was followed in the development of the ideal MHD toroidal stability coc
ERATO [4] and PEST [5]. Uniform convergence of the entire computed spectrum towe
the correct spectrum, i.e. good convergence for every eigenvalue, is achieved when th
cretisation satisfies constraint (3.7). Otherwise, “pollution” is found where a specific eig
value converges by increased resolution, but at the same time new incorrect (“pollut
eigenvalues are introduced. A comprehensive discussion of this numerical phenomer
given by Gruber and Rappaz in Ref. [6]. Two components oém be chosen to put the
perpendicular into the form

o 1
V(U /R = <

J

(% + muz> . (3.8)

Thus the constraint (3.7) implies that the basic functions iorcalled H, are one order
higher in s than those ofwand y called h:

9H/ds = h. (3.9)
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FIG. 2. Finite elements: (a) cubic Hermite and (b) quadratic expansion functions. The solid curves repre:
the elements associated with the pointaral the dashed curves, the neighbouring elements.

This corresponds to a “staggered” mesh used in finite differences. Itis sufficient th@PH
i.e., the derivatives need not be continuous.

The third component of the velocity is chosen to yield a good numerical approximation
the sound waves. It is emphasised that the conditions (3.6a) and (3.7) constitute constr
for the numerical scheme. The plasma is treated as a compressible medium.

Dissipative MHD yields a nonvariational problem. In order to obtain an equally goc
numerical approximation higher-order elements H are required for the normal compor
b, . Itis found that these functions have to be ih 2. have to have continuous derivatives.
Cubic Hermite elements are thus used for H and quadratic elements for h. In each
two orthogonal functions define a complete set. The cubic Hermitian elements, toge
with the quadratic elements are plotted in Fig. 2 and listed explicitly in Appendix C. Th
choice allows satisfying the condition- b= 0 up to machine accuracy. This constraint is,
of course, a physical condition.

2. Approximation of b

An obvious choice for enforcing the conditidh- b = 0 is to eliminate one component.
In Ref. [3] it was shown that eliminating the lbomponent

r /10 .
by = — <?§(rbr) + |kbz> form+#0 (3.10)
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yields a pollution-free numerical approximation to the entire spectrum as demonstrate
Fig. 2 of Ref. [3]. In the toroidal system the different Fourier components in the expans
(3.5) couple, including the r&= 0 component, making the elimination (3.10) impossible
It was found that the elimination of,deads to a numerically unstable scheme, since fi
unstable modes and Akvi waves p is very small but is replaced by two large component
which almost cancel each other. This leads to numerical difficulties and should there
not be done!

To avoid different schemes for $80 and m= 0, all three components of the perturbec
magnetic field have to be retained. This now leads to a numerical system with additione
mension of 2 Nfor each Fourier component (withskhe number of finite elements). There-
fore, additional 2 NM modes occur in the numerically approximated spectrum. Amot
well-approximated eigen-solutions we find, in addition, spurious modes which are du
nonzero values oV - b. AlthoughV - b vanishes analytically,

V-%—?:kV~b:—V-VxE:O; (3.11)
for nonzero eigenvaluéx # 0) this is not guaranteed numerically for finite resistivity
The cubic Hermite shape functions have continuous derivatives across different elem
H e C1, but the quadratic ones do notehCP. Finite resistivity in the induction equation
leads to radial derivatives of the poloidal and toroidal componentswlfitch are expanded
in quadratic finite elements. The jump in these terms yields spurious eigenvalues, w
are consequently linked to jumps¥: b; i.e.V - b; # 0 across different elements. We have
not found a simple way to eliminate these jumps. A remedy is found by expanding all tt
components of lin cubic elements K C!. ThenV - b = 0 is satisfied also numerically.
However, in the limit ofyg — O this scheme does not match well the discretisation us
for the ideal systening = 0).

An accurate numerical solution is produced when the perturbed magnetic field is
pressed by a vector potential as introduced in Eg. (2.18), and the induction equation as
by (2.17e). The proper discretisation satisfying the constraints on the numerical met
Egs. (3.6a), (3.6b), and (3.7), yields an expansion in cubic elements faadial velocity
component), a(poloidal component of the vector potential), andtaroidal component of
the vector potential), i.eua, a € C!, and in quadratic elements fos,ws and a (normal
componentk C° as well as forp and T.

The weak form yields radial derivatives opand a only, but not on @& The divergence
equation (3.11) yields

AV .b=0, (3.12a)

with the consequence that for nonzero eigenvalielsis zero up to the machine accuracy
The additional spurious modes now lie on the origin of the complex plane

|A(spurioug| < 10712, (3.12¢c)

This has, indeed, been verified by many numerical runs.
It should be added that the induction equation (2.17e) yields in the idealizase0)

a-B,=0. (3.13)
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Thus, an additional fraction of eigenmodes is again shifted to the origin. The problem
diagonalising the entire matrix by means of QR or QZ can be stabilised by introdycing a
a- By as avariable. Again the inverse iteration algorithm does solve the system accura
for all physical eigenvalues and eigenfunctions witheéther kept or eliminated. Since
dissipative systems are to be examined in the first place this point is not essential.

In conclusion, this discretisation produces a very accurate and numerically stable pre
dure as is demonstrated by the applications.

With the state vector for the perturbed quantities defined as

w = (p,uT,a (3.14)

the linear operators in Egs. (2.17a)—(2.17c) and (2.17e) are represented by niafizks
S, where inS only the diagonal elements are nonzero Rrmbntains differential operators
and equilibrium quantities. The set of linearised equations then reads

ASW = Rw. (3.15)

3. Variables and Projections

In the curvilinear flux coordinates g, ¢ the ansatz is made for the perturbed velocity

5 iR? _R?
u=RVv;Vy x V¢ — TVquS x Vi — |Tv350, (3.16)

with f given by (3.2). Then yrepresents basically the sound modes araiw v correspond
to the contravariant velocity components. This leads to

AN mv2> (3.17)
m

2y o 11
V.(u /R)~J (85

for every Fourier harmonic allowing us to make the fast wave contribution sufficiently sm.
for unstable modes and for A modes. The divergence is brought to its required valu
by adjusting the componeng~vThe perturbed vector potential is represented as

a=—(i/HaVy + @Vy + aVe. (3.18)
This leads to a simple form for the magnetic field

b' = Jtek g a. (3.19)

Furthermore, we redefine the perturbed density and temperature

Sp
3.20
sT. ( )

=1 )
Il

Then the state vector comprises the eight variables

w' = (0, V1, V2, V3, T, 1, &, &) (3.21)
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This leads to systems with total dimension
N =M x 8 x 2Ns = 16MNs, (3.22)

where M denotes the number of Fourier harmonigsidthe number of radial intervals and
there are two orthogonal quadratic, resp. cubic, finite elements per interval.

4. Eigenvalue Problem

The system (2.17), summarised in matrix notation in Eq. (3.15) is solved in its weak f
in the weighted residual formulation. Let

(zw) = / drz* - w (3.23)

denote an inner product in the appropriate Hilbert space. The exact solution is approxin
by trial functions and mapped into the space of weighting functions; both function clas
have to be sufficiently regular. We proceed by taking the inner product of the system (3
with the weighting function by integrating over the volume

Mz, SW) = (2, Rw). (3.24)

Integration by parts reduces the order of derivatives. The error introduced in the diffe
tial equations through the approximation_ofby a set of discrete expansion functions i
orthogonal to every weighting function. In the standard Galerkin procedure adopted |
the space of the weighting functions is chosen to coincide with that of the trial functic
This leads to the matrix eigenvalue problem

AX = ABX, (3.25)

where xdenotes the vector of the expansion coefficients and the ma&ieesB contain
equilibrium quantities and derivatives and are bilinear in the trial functions. Obviously,
normB is self-adjoint and positive definite, batis always nonsymmetric even fgg = 0.

The Hermitian eigenproblem has all the properties needed to ensure successful num
evaluation, since a Hermitian matrix cannot be defective and since a small perturbatic
the matrix causes only a small perturbation in the eigenvalues. The general non-Hern
system defines, therefore, a much harder problem, where small perturbations in the n
can lead to a finite change of all eigenvalues (as discussed in the context of the ps
spectrum [7]). Two different classes of solvers are applied to the system, namely QR (
and inverse iteration. The diagonalisation by means of QR or QZ vyields all eigenva
but destroys the initial sparsenessfoéindB. Therefore, at present it is used only up to «
dimension of N= 2000. Nevertheless it yields valuable insightinto the spectrum, especi:
when new branches with unknown properties are discovered. In conjunction with an
of-core solver inverse iteration allows treatment of large systems, at present routinel
to N =50,000 on a CRAY supercomputer and up te=N20,000 on a typical workstation
with 256 Mb memory and fast access to a disk. The features of these algorithms have
extensively discussed in Ref. [1].
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IV. EVALUATION OF MATRIX ELEMENTS

We collect the contribution for the matrix elements for both norm and the “potenti
energy.”

1. Mass Conservation

)\///2(/3)*- g?qudxw— ///zm U VpotpoV - WIdsdydp, (4.1)

where z5)* denotes the complex conjugate of the expansign o0& e '™ hr(s). After the
¢-integration we arrive at the integrands

. fR?
KO = Z(P)*P??q7 (4.2)

1 .
W® = —z(p) g{RZpo[asvl + (1/i)d, (V2 + V3) + nqws]

+ R?[v1s00 + (V2 + V3)(1/i)d, oo
+ polV1dsR? + (V2 + v3)(1/1)d, R3]}, (4.3)

whereds=09/9s, 3y =9/9,, andd, =9d/d,. Typically pg = po(s) and the term$, po van-
ish. The contributions to thé and B matrices still require the sy integration, e.g.,
BW = [[dsdy K. Making use of the general state vectorand inserting the finite-
element basis vectors, i.e. cubic elements H foray, and a and quadratic elements for
0, V2, V3, T, and a, the contributions are labelled as

B(1 1 = / dsdy e 'm"h“(S) qém"h(S) (4.4)

This expression describes the interaction of the weighting func;'(tsirmimx and the trial
expansion function;iis)€™ and is symbolically abbreviated as

B(1 1) = hg—q (4.5)

In this fashion the right-hand side of the mass conservation yields for the interaction
z(p)* and v,

A(l,2) = hH/ — hH= (R233p0+poasR) (4.6)

where H = 9sH. Inthe same fashion the expression A(1, 3) and A(1, 4), i.e. for the interacti
of z(p)* with v, and \, are obtained.

Itis noted that all matrix elements are bilinear expressions in the finite elements, wher
H’ = dsH, and h can be present on either side. The corresponding substructure is expla
explicitly in Appendix C.
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2. Momentum Balance
The momentum equation is cast into the form
ApoU = —Vm1 +H, 4.7)

wherer; denotes the total pressure

w1 =poT +pTo+Bg-b (4.8)
with
|V1ﬁ|2
500 R2 (nal — 0s8g) — g(Ma — Nap)
F1F
+ @?6(8532 — may), (4.9)
where
VY - Vy
=j—70F". 4.10
|V |? ( )

For the evaluation of the matrix elements of the eigenvalue problem a vector is proje
upon three orthogonal direction, i.e.

A=AyVY +ALVEXVY + Ay Vo,

where the evaluation of the corresponding projections is straightforward.
The vector Hhas the corresponding components

2
— . 1
—bL(a],,—lga )| id +Fb¢(8¢ |gaX)@

b _
— ZJQ’E + j(lnq + 9,)by, (4.11a)

H, = :](8)( + |nq)bL +J¢b¢,

F |V |2 1

+ AV by d,— Rz + Fbyd, — R | (4.11b)
Hy = gwx +ing)by + ;’—wwwm (4.11c)
Here the three orthogonal projections of the magnetic field are defined as
b, = ;[axag — inay (4.12a)
vy 2
by = %(naq — 95%) + 9(i0, 8 + Nay) (4.12b)

F .
by = ﬁ(asa;g +i0,ay). (4.12c)
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The weak form of the momentum balance equation is given by
/W(z) dr = /dt zZ(V)* - [V + H]
_ / de Vv — / dS- zv)* 11 (4.13)
+ / de {2(v,)* Hy VY 2+ 2(V.)* Ho Vi [2/R? + 2(V4)* Hy /R2}

(where Zv1)*, z(v2)*, and Zv3)* denote the complex conjugate of the expansion function
for vi, V2, and ) and is integrated by parts with

Z(v)* - dS= z(v;)*R*dy d¢. (4.14)

Itis noted that no second-order radial derivative on the expansion function occurs. Sect
ordery -derivatives, which occur in the expressigyb,,, 9, b, , andd, by are also integrated
by parts.

3. Energy Equation

The energy equation is treated in the same manner as the continuity equation.

4. Induction Equation

The weak form leads to
/ dr z(a)" - (vxBg — noVXVxa)
= / drz(a)* - vxBg + / 1n0Z(d)* x(Vxa) - dS (4.15)
- / dr Vx (noz(@*) - Vxa
Again second derivatives on the expansion functions are avoided by partial integrat

The matrix elements in completeness are listed in Appendix A. The required equilibrit
guantities are given in Appendix B.

5. Implementation of the Boundary Conditions

The boundary conditions at the magnetic axis imply
Vilaxis = 0;  &laxis = 0;  aglaxis = 0. (4.16)
In the case of a perfectly conducting wall at the plasma boundary, it holds that
Vilwal = 0;  &lwal = 0;  aglwan = 0. (4.17)
The boundary conditions (4.16) and (4.17) are essential boundary conditions. These 1

be applied to both the variables and test functions. In the CASTOR code the conditions
implemented by removing the rows and columns of the corresponding matrix element:
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the axis and at the boundary. Note that in this case the surface contributions in (4.13
(4.15) are zero. We have developed a formulation where both the ideal and the res;
boundary conditions at the plasma—vacuum interface are implemented as natural bou
conditions; i.e., they are automatically satisfied when solving the weak form.

Using the pressure balance relation (2.23) and the absence of equilibrium surface cul
(i.e., By = By,) the surface contribution (4.13) becomes

W= - [2(0)" - dS(@o- by). (4.18)

Ifwe now perturb the vacuum with a unit field perturbation at the boundary£b, -n,, the
response of the vacuum in terms of the parallel magnetic perturbatieb, Bat the plasma
boundary can be obtained. Thereby, the response of each independent Fourier har
perturbatiory is a function of the poloidal anglg,

(Bo-by)e =) &b Vs, (4.19)
k

where all the information of the vacuum solution is now described by the vacuum resp
matrix ¢. Rewritten in Fourier components (4.18) reads

W, = / [2(v)*] , €™ "ai, € (I0")R* . (4.20)

k¢

The same procedure is followed for the resistive boundary condition, i.e. in the case of f
resistivity at the plasma boundary. Thereby the expression (4.18) for the ideal surface
is unchanged. This term in now used to implement the continuityofl. The resistive
surface term (4.15) is utilised to implement the continuity of the remaining tangen
component of the perturbed magnetic field,

WE = - [ oiz@)" b — 2(@0)" ) e 0. (4.21)
Again the vacuum response is defined by

(bva)e = Y Bre(IbMx
k

(4.22)
(B2 = Pre (I
k
The matricesx;3, and+ are related through
F
Bo-b, = @(bvz + gbya). (4.23)
The condition
JVxb)-Vs=0 mphesﬁ = ab"z. (4.24)

dx d¢
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So for the implementation of the boundary conditions only one of the three response matr
needs to be computed. The final form of the resistive surface term is

WE = [0 e ™ S lz@ihic - Z@hiude By, (4.25)
k,¢

In this fashion the resistive boundary conditions are implemented as natural bounc
conditions and the ideal boundary conditions are retrieved by setting the resistivity to z
The response matrig is the only information required from the vacuum solution and ca
be calculated independently from the plasma normal-mode problem.

V. APPLICATIONS

A basic element in the development of the computer code is the testing of the numer
scheme, in particular, its accuracy and its convergence properties. Test cases in the c
drical limit, which are available analytically and numerically as described in detail in Re
[3, 8], were successfully reproduced but are not reported here. The first validation in toro
geometry is based on the comparison with results from ideal MHD stability for a simy
and easily reproducible tokamak equilibrium. These test cases were performed by diffe
codes and published in Ref. [9] (1978), and were further utilised later on, e.g. by the NO
code [10] (1987), and by the SPECTOR code [11] (1996).

In the CASTOR code the eigenvalue is normalised to theeXfiime:

LV p(0O)R(0)
Bo(0)

>

(5.1)

The case of a constant pressure gradieritigpand a constant current profildfdy has

an analytic solution as given by Solovev [12]. This class of tokamak equilibria allows f
finite inverse aspect ratio = a/R, for elongation E, and for variablg, (herep, is set
identically to unity). A JET-type cross section is givendy- 1/3 and E= 2. The results
computed by CASTOR are presented in Table 1, together with the previous results fi
the other codes. Her& = Ry /a denotes the ratio of wall radius to plasma raditis: 1
corresponds to a perfectly conducting wall placed at the plasma boundarys anado
corresponds to a wall at infinity. The values of the safety factor on a®isand on the
boundary are also given. In this table the eigenvalues are normalised to the poloideal Alf
time and thus the growth rates are multiplied by the value of the safety factor at the pla:
surface, i.e.

VpORO)D)

= Aq(l) = A
14 q(d) Bo(0)

(5.1b)

It is evident from this table that the results obtained from the different codes agree q
well. In the case of ! = 3,E = 2, A = 1, and q0) = 0.7 for example, the maximum
deviation in the results in just 3 in 120 (2.5%). Similar agreement is obtained also in
other cases. We must remember that the first table in Ref. [9] was compiled in 1978 w
the computing power was much less than today. In conclusion, the results computec
the CASTOR code agree within typically 1-3% with those from other codes as listed
Table 1.
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TABLE 1
Comparison of the Eigenvaluesy? for Specific Solovev Equilibria
from Different Ideal MHD Spectral Codes

e E A q0) ql) n CASTOR KERNER PEST-1 ERATO Degtyarev NOVA Spector
16 1 2 1791 20 1 0216 0.202 0204  — 0211 0208 —
16 1 2 2239 25 1 0513 0504 0506  — 0511 0508 —
13 2 1 03 0522 2 0429 0413 0427 0431 0430 0430 0.437
13 2 1 07 1219 2 012 0.118  0.119 0120 0121 0119 0.118
13 2 oo 12 2090 1 074 — 075 078 — 0.748  —
13 2 co 20 3483 1 066 — 068 075 — 0.656  —
13 2 oo 06 1.045 2 1.338 — 1.31  1.40 1.32 1.35 —
13 2 oo 1.0 1741 2 1.03 — 1.03  1.07 1.06 1.038  —

This agreement is remarkable, since quite different numerical schemes were empilc
e.g., ERATO utilises two-dimensional finite-elements in conjunction with a modificati
of the variational method (so-called finite hybrid element method), NOVA is based
a nonvariational formulation, together with a nonlinear root finder, whereas PEST
CASTOR use a Fourier finite-element discretisation, but CASTOR does not apply
variational form and SPECTOR uses finite differences.

In order to test the accuracy beyond the 1% margin obtained above, we perform a se

comparison with the newly developed codes TERPSICHORE [13] and MARS [14], ag
for the Soloviev equilibrium by extending the Table 1 presented in Ref. [15]. For t
second, more detailed comparison the eigenvalues in the normalisation on (5.1) are
up to four digits in Table 2. Here two elliptical, £ 2, and one circular, E 1, cross section
have been considered for an inverse aspect ratio 1/3, with fixed boundaryA =1.0.
In the TERPSICHORE and MARS codes the accuracy of the piecewise finite-elen
method has been improved by the tuneable integration method [16]. The agreement
the CASTOR code is typically within 0.5% with the exception of one eigenvalue from 1
MARS code on the lower side. = 0.0533. In particular, the agreement between CASTOI
and TERPSICHORE is within 1%.

Next the convergence properties are discussed. It is noted that from now on the nori
sation as introduced in (5.1) is used. Since the eigenfunctions of the results from Table
smooth a high order convergence with the number of radial finite elements, as well as
the number of Fourier harmonics, is expected. In Fig. 3 the eigenvalue is plotted versu
number of radial grid intervals{Nlabelled N on the figure) for different numbers of Fourie
harmonics M. The dependence on the number of radial grid points is inversely quad
and, hence, the convergence is fast. For this elliptical crosssection there is a strong cot

TABLE 2
Comparison of the Eigenvalue for Specific Solovev Equilibria with e~ = 3
and A = 1.0 from Different Ideal MHD Spectral Codes

n q(0) E CASTOR ERATO MARS TERPSICHORE
2 0.3 2 1.255 1.26 1.26 1.25

2 0.7 2 0.284 0.284 0.284 0.284

3 0.75 1 0.05384 0.0541 0.0533 0.0538
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FIG. 3. Convergence study with respect to the number of Fourier harmonics M and radial grid points N

the case = 1/3, E=2, A = 00,q(0) = 1, and n= 2 in Table 1. The dependence on the number grid points is
inversely quartic.

due to ellipticity with Am = 2 and a weak toroidal coupling withm = 1. The overall
convergence with respect to the number of Fourier harmonics is therefore slow and reqt
more than 20 harmonics for a good approximation to the final result. But the converge
is asymptotically faster than a polynomial dependence/M.IThe expected exponential

behaviour is displayed in Fig. 4 for the case ef 1/3 and E= 1 in the Solovev equilibrium.
The error scales as¥/175,

102

103

Error

104

¢
10—5 Lol Lol Lol il e 1 |||||||§
10-° 107 105
Exp (-M)

FIG. 4. Convergence study with respect to the number of Fourier harmonics M for fixgét=N15) for the

case oft = 1/3, E=1, q(0) = 0.75, n= 3, andA = 1.0. The convergence exhibits exponential dependence
in M.
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Vy (g=1)
FIG.5. Stability limit for the internal kink mode in terms @, = 2(/pdA/[dS— p(wl))/Bg(wl)) versus the

radius of the g= 1 surface for a circular cross section large aspect ratfo= 10, equilibrium with profiles given
by (5.2a), (5.2b) in comparison with the limits from analytic theory of Ref. [19].

—_

A severe test for the validation of a MHD stability code is given by the interval kink moc
which has different stability properties for cylindrical and toroidal symmetry. Consequer
the stability is determined by fine details of the tokamak configuration where terms u
second order in inverse aspect ratio need to be retained and analytical treatment ne
be carried through order* in SW. A toroidal equilibrium with circular cross section and
aspect ratia~! = 10 is analysed. The choice of the pressure and current profile

p=po(l—v). (5.2a)
(i) =jod =), (5.2b)

allows a comparison with analytical work by Bussd@l.[17] and Mikhailovskii [18].
In Fig. 5 the stability limit in terms of,,, defined according of Refs. [17, 18] as

_ ,JPdA/[dS—p(y)

) 5.3
B2(Y1) 5:3)

Pp

where dA= J ds ¢ and B,(y1) is the flux-averaged poloidal field, is displayed as a fun
tion of the radius of the & 1 surface. The limit for ¢0) = 1.0 is given byg, =0.3. For

a small radius of the g 1 surface, i.e.@=1) < 0.25, our results coincide with the an-
alytical results derived for the parabolic current profi® j= jo(1 — r?/&). The detailed
comparison requires the integration of the second-order ODE given in Ref. [19] for
profile (5.2b), where the detailed equilibrium relatign= v (r) is utilised to relate with
the corresponding j(r) in the analytic model. These analytic marginal points are show
the solid line in Fig. 5.
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The minimump, value is defined by the configuration whergy= 2.0 i.e. yielding
a critical 8, slightly below the value 0.2. When the g 2 surface is no longer inside
the plasma the predicted stabilising effect becomes dominant as is evident from the
of the diagram with ¢q = 1) > 0.55. Each point on Fig. 5 is obtained by extrapolating
Bp to its value where. is zero as demonstrated in Fig. 6. It is emphasised that grow
rates in the order of Re ~ 10~ to 107° are still evaluated with good accuracy. Three
Fourier components & 0, 1, and 2 need to be included. The numerical calculations ar
thus performed with five harmonics ranging frepi to 3. Near marginal stability, where
the eigenvalue approaches the Adfvcontinuum, the eigenfunction develops a singula
behaviour in radius. Therefore, a high resolution with respect to the number of radial ¢
points is necessary. The case o000 constitutes the accurate solutig. In Fig. 7 the
deviation ofi from this asymptotic solution is plotted versyd\ in the double logarithmic
scale. The maximum deviation defines a straight line which scales approximatgés 1

Next we consider nonzero resistivity. In the case that the ideal internal kink mode
stable there exist unstable resistive internal kink modes. This is shown in Fig. 8. i
slightly different tokamak equilibrium with circular cross section, aspect eatfo= 10,
and the profiles

P=po(l—v),
N (5.4)
() =Jo@=y),

with go = 0.9 andg, = 0.1, the growth rate is plotted in dependence of the resistivity
The two branches of the resistives1l perturbation are displayed, namely the tearing mod
scaling asng/s and the resistive interchange scalingné@. For very small values of the

1.0
(10-9) q(0) = 0.900
08
q(0) =0.850
06
\ L
0.4+ q0)=0950 o7
0ok q(0) = 0.990
§
0 ] | | S
0 0.1 0.2 0.3 0.4 0.5

Be?

FIG.6. The extrapolation to marginal stability of the internal kink mode for different values of q(0) displaye
in Fig. 5.
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FIG. 7. Deviation of the growth rate from the converged growth fatgdefined by N= 1000 obtained with
five harmonics-1 <M < 3for g(0) = 0.9 andgB, = 0.4 in a double logarithmic scale. The maximum deviatior
defines a straight line scaling aght*.

resistivity the pressure driven instability becomes dominant (in this casg for10-12).

It is emphasised thajy values as small as 1& need to be treated in order to obtain the
correct asymptotic scaling. The necessary accuracy in the numerical calculation is ach
by including up to N= 1000 radial points in conjunction with mesh accumulation arour
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n

FIG. 8. Growth rate of the resistive internal kink for the equilibrium with circular cross section= 10

and the profiles given in (5.4)18) = 0.9 andg, = 0.1. Two branches scaling a§® andg®, respectively, exist

in the limit of small resistivity.
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the g=1 and 2 surfaces. The growth rates being as low as h@ve been obtained by
convergence studies as discussed above. A detailed study of resistive instabilities
tokamak is given in Refs. [20, 21].

In the final application the stable part of the resistive Alfspectrum is examined. Again
a tokamak with circular cross section is considered. The toroidal coupling introduces g
in the ideal Alfvén continua and global modes exist with a frequency inside the gap (see F
[22]). The aspect ratio and magnetic shear are chosen such that there is a single, pronot
gap; this is achieved by a tight aspect ratie; 0.3, and small shear with the safety factor
ranging from @ = 1.25 on the axis to g§= 1.75 on the boundary. For a toroidal wave
number n= 1 there is a gap in the m 1 and 2 spectrum around thg.g= 1.5 surface
which occurs near the half radiusrs 0.5. In Fig. 9a the complex Alfen spectrum is
displayed for two Fourier harmonics m 1 and 2 and a resistivity af, = 107°. The
Alfv'en modes are now heavily damped, yielding two curves in the comppdane. These
curves are actually independent of the value of resistivity. But the point density sca
as ngl/z. The resistive branch joins the ideal continua only at the end points of the tv
continua, as is known from many analytical and numerical studies (see Refs. [3, 7, 8]).
gap in the two ideal continua ranging fron29 < Im(A) < 0.46 is clearly visible. There
is a global TAE with a frequency of Ith) = 0.34. The entire resistive Al spectrum is
well resolved. It is noted that the slow modes have much smaller frequency and lie in 1
scale basically on the reataxis. In Fig. 9b the frequency, i.@. = Im{A}, is plotted as a
function of the radial coordinate s. The ideal continua are indiated by the thick lines. |
finite resistivity the continuum is replaced by the discrete set shown in Fig. 9a. For s
w ~ 0.2 the eigenfunction has basically only one Fourier component, namely-dlrfor
small s and a m= 2 for large s. Accordingly, foi» ~ 0.6 the m= 2 component is dominant
at small s and the re= 1 at large s. Near the lower and upper end of the gap both harmon
have equal weight. The eigenfunctions of three normal modes are displayed as a func
of the radius at their corresponding frequency value. The solution with a frequency ins
the gap, case 2 in Fig. 9, is the TAE and has even parity in the In2 components. The
mode with a frequency at the top of the gap, case 1 in Fig. 9, corresponds to the first kin
toroidal Alfvén eigenmode (KTAE) and has odd parity. Both types of &if€igenmodes
play a pronounced role in the discussion of Afi€igenmode induced anomalaparticle
transport in deuterium—tritium plasmas (see Ref. [23]).

VI. CONCLUSION

The resistive MHD normal-mode spectrum in tokamaks, i.e. the linear motion arou
a general axisymmetric equilibrium, is solved numerically by the CASTOR code. T
numerical scheme is based on a specific flux-coordinate system and on an approg
choice for the projection of the perturbed velocity and the magnetic field in the form
the vector potential. A Fourier finite-element discretisation is applied to the perturbat
leading to a large-scale non-Hermitian eigenvalue problem. It is shown that both the ic
MHD as well as the resistive MHD spectrum is approximated with high accuracy. T
challenge for the numerical method consists of resolving the limit of asymptotically sm
resistivity well.

The benchmark tests yield good agreement (typically within 1%) with other MHD code
The studies of the internal kink instability (both the ideal and resistive mode) demonstr
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FIG. 9. (a) The complex resistive spectrum of a configuration with a tight aspect ratiosca$e3, circular
cross section, and a weak shear prafije= 1.25, gs= 1.75) for n, = 1075. For the toroidal wave number=al
a single pronounced gap in the Adfr’'spectrum occurs ag = 1.5 with a TAE inside this gap. (b) The ideal Alwn’
frequenciesm= 1, 2 continua)}y = Im(X) are presented as a function of radius (thick lines). Three eigenfunctio
of the resistive spectrum are displayed at the position of their frequency.

that the code evaluates small growth rates with high accuracy and for finite resistivity
correct scaling for asymptotically small resistivity.

In Fourier space the convergence of the eigenvalue is asymptotically faster than a |
nomial dependence in/M. The convergence with respect to the number of radial fini
elements yields typically an inversely quartic dependencejig.— An| o< 1/N&.
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The CASTOR code is used routinely for modelling JET discharges. The emphasis
been on the beta limits, kink-type instabilities, and on stable exifegigenmodes. The
numerical method provides a general tool for the evaluation of the spectrum of dissipa
MHD systems. Consequently, a generalisation of the method to the analysis of kin
Alfven eigenmodes [23] and of thermal instabilities has been successfully performed in
context of a stability analysis of tokamak equilibria concerning MARFE's [24].

APPENDIX A: MATRIX ELEMENTS

The matrix elements are bilinear expressions in the expansion functions and are labe
B(,j) and AG,j), respectively, with jj = 1,...,8. The Fourier exponents are'&«
and " for M, m € [Mmin, Mmay] . The radial expansion function i (s),i =1,...,8
and k=1, ..., Ns, and either quadratic (labelled h) or cubic elements (labelled H) a
employed. The equilibrium quantities are in generadlependent and are Fourier-spline
interpolated:

eqs x) = »_€"eg(s) (A1)
4
Thus a typical matrix element reads

B(i,]) = /d¢ dy ds &' ™ Hi(s) eqs. x)h(9e . (A.2)

The¢ andy integrations are then performed analytically and the remaining s integrati
is done numerically by 4-point Gaussian quadratures. In the following only the integra
is listed, e.g.

B(i.j) — h'eqs, x)h,
where
h',hi e {h,H} withH = dH/3S.

The correspond substructure due to the radial overlap of the neighbouring finite elem
is explained in Appendix C.
The matrix elements are
fqR?

B(L1) = hh -

2 4 ) 2
B(2,2)=HH,oo<quR 1 fgR* (VY vx)>

Vyl2 - F o [VYP?

B(2,3) = thoig(vw V)
B(2,4) = B(2, 3)
B(3,2) = —B(2, 3)

R
B(3.3) = hhpo‘i—Fwwz
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B(3,4) = B(3, 3)
B(4,2) = —B(2,3)
B(4, 3) = B(3, 3)

R FqR'
B4, 4) = hhp0<qu|w|2+ qf>

1 fqR?

B(5,5) = hh
(5,9 ,—17 @F

LS
B(6.6) = hh-— | V|

B(6,7) = hHi-g(wavx)

B(7,6) = —B(6,7)

fF 1 fgR? (Vi - Vx)?
B, 7)=HH[ = . ARV VO
qg |Vyl F V|
fq
B(8,8) = HH—
F
AL 2) = —h PRt (gedeo, , ORC
S s s s s
A
AL, 3) = —hhngz
poR?
A(1,4) = —hh=—( + nq)
To dR2 ToR?
A2, 1)=Hh—08—+H/h0—
S 0S S
po OR? poR?

A2,5 = Hh— — + Hh——
29 s as+ s

2

A(2,6) = H’h(?ww— 'f:—q : m> - H’h[n~i(2ﬁ1— m+ng) - (Vi - V)

Pno /g _
— —(SIv
+ as<F2| w)

2

AR, 7) = H/H’qu +HHIn(Vy - Vy)

+HH

anm .
@ M RevyE TR

. q o (F
+m.(v¢-vx)-l—:-a—s(a)

f fq? /Vy - Vy
("%

295
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1
A(2,8) = —H,H/?|VI//|2 —HHIM(Vy - Vy)

HH'
+ fq? 9s

= f f? (V- Vx \?
mE(m+nq)<—R2|vw|2+E< vy )

. J (F
+RiVY Y ),9: 3—S<q)

2 2
2= m 4 ng(VY V) (22 VW)]

—HH

ToR?
A@3.1) = hh™ ;’

A@3,5 =hh

m,OoR2
s
A(3,6) = —hh(mqu + n29 |v1/,|2)

ME2
AB.7) = hH ™ 4 hH
3.7 q fq 9

F o
—inMm—m+ngVy - Vx + n——<—| ¥l )1

A(3.8) = hHn- |9:|V1/f|2+ hH

im(m—m+ngVy - Vy —fI; ( VY| )]

A@,T) = hH’—(m m) + hHn

(fh—m)ivy -V +E3 9|v1p|2 +E dr
X fgas\ F f ds

. F 0 F dF
A(4,8)=—hHm[|(m—m)V1p~VX-|-ﬁ —<—| WI) d_s]

R?poT. dR? RZ oT
A(5,2) = —hH 0 —hH— To—— + 0
S s y—129s

R2poT
A5, 3) = —hh—2"%

A(5,4) = —hh Rpo 070 4 4 ng)

A(6,2) = —hH-iq(Vy - Vy)

A(6.3) = hh?

fRZ- V|2

—tnf - L vuz - m. ©
A(6,6)_hh< oz |V [2 —m fq)

=
— —hH IV - V)(nog

A(6,7) = hH .
(65 ) 770m fF F
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A(6, 8)—hH’non |V1p| +hH-i-nmpy= Vw Vx

2 2p2 ) 2
AT.2) P ( f fq2R2 (Vi - V) )

Vyz - BV

A(7,3) = —Hhig(Vy - V)

F F
A(7,6) = Hhio— m+Hh{|n oIV - Vy + m%]

fq F fq 9s

F fF 1 2 (V- Vx)? F
A7, 7) = —H'H 10— — HH?p0 - — , g Vv 2x) AL
fq R2|Vy| F o |Vy fq os

o q noFf 1 @ (Vi - Vy)?
A(T.8) = —HHinio (V9 - V) + HH mn<R2|W|z 2 vy

A(8.6) = Hhno - VY2 —Hh[ﬂ oNMAVY - Vx 4+ n- — |v1/f|2 B”O]

A8, 7) = H'Hin ™ w Vy + HH

Pl 1 @y
onm (R2|wf|2+F2 VP2

. q 1o
+ ml_: (VY- V) - ¥‘|

N 8
A(8.8) = —HHno vyl +HHf[2nom<w-vX>— % vl ﬂ}

— H'Hingm- = - (V¢ - V)

Pl 1 @y VP
l’”mm <R2|wf|2 TR P

—im= (vw v )%]
The ideal boundary conditions yield the contribution at & to the matrix elements
iF ~
A2 = a(m + N0 Bmm
—imF _ A
A(2,8) = Ta(m =+ ng) Bsm (for n £ 0).
For finite resistivity the corresponding contributions are

A7, 7) = —inonBam
A(7,8) = nomPBmm
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A@B7) = nomﬁmm

A(8.8) = —ino - B (forn £ 0).

APPENDIX B: EQUILIBRIUM QUANTITIES

In the curvilinear flux coordinate system the line element is given by dse+
dxe,+ dge;, where @ = IV x V¢ etc. The distance along a magnetic field line with
ds= 0 is represented by its projections

d¢y = /Gzzdg (for dx = 0) with gaz = R?

(B.1)

d¢y, = /O dy (for dp = 0).

The ratio is determined by the magnetic components
déy _ Rdp §, (B.2)
which implies

F(s) dep
= . B.3a
as) RIVy| (8.3a)

Thus, integrating along a flux contour=sct and evaluating & in a local coordinate
systemy is determined,
_ Ko de,
as)s) RIVY|

The equilibrium code HELENA solves the Grad—Shafranov equation for the poloic
flux ¥,

(B.3b)

2 2
A 1 9y —(1+ex )zdP(W) _ 1dP(y)

AV =0 Y2 14ex ax diy) 2 dy) °

(B.4)

where x= (R — Rg)/a, y = Z/a are the normalised coordinates in the poloidal plane an
¢ (= a/Rp) is the inverse aspect ratio. Equation (B.4) has to be solved inside a region w
an arbitrary but given plasma boundary, where the boundary condition stat@sthals.

The Grad—-Shafranov equation is solved by applying the Galerkin procedure using bict
isoparametric finite elements, which yields highly accurate solutions withiaathd Vv
continuous across element boundaries. This leads to a system of linear equations for
step of the nonlinear iteration:

Kny1 = b (B.5)
K denotes the stiffness matrix andsthe force vector given by
1
Kij = // g VHIE. D - VH(E. D] d dt,

1 (B.6)
b = // Hi(E, b [Rd(w) + 5 FPW) I dt
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where Jis the Jacobiarix, y)/d (&, t) and H are the interpolating functions. The integratior
is done numerically usga 4 by 4point Gaussian quadrature. Details of the iteration c
Eq. (B.5) are given by [25].

The interpolating functions of the bicubic Hermite element are given by

1
Hoo(x, ¥) = 75X+ X0)?(XXo — 2)(Y + Yo)*(YYo — 2)

1
Hio(X, y) = —7Xo(x+ X0)?(XXo — 1)(Y + Yo)(yyo — 2)
(B.7)

1
Hou(x,y) = —7(x+ X0)%(XXo — 2)Yo(y + Yo)*(Yyo — 1)
1
Hiui(X,y) = —Xo(X + X0)2(xXo — DYo(Y + Yo)2(yyYo — 1),

with xo and yp the coordinates of the four corners of a unitelengertt, —1), (-1, 1), (1, 1),
and(1, —1). A function f(x, y) inside the element is then approximated by

f(X, ¥) = > HooX, )f(Xo, Yo) + Hao(x, y) (XO Yo)
oY (B.8)

2
+ Hoi(x, Y) (Xo,YO) + Hia(X, Y) (Xo, Yo),

where the summation is over the four corners of the element. However, with the elem
directly defined in (X, y) coordinates it is impossible to approximate the shape of the pla
boundary accurately or even continuously.

Isoparametric mapping provides a one-to-one correspondence between the ltcal
and the global (x, y) coordinates. The coordinates transformation between the bi-unit sc
and the curvilinear element is given by

3X5 t ax[ t BZX{ Rr
X , t — H X H 0,0 H 0,0 H 0,0
(9] g [ 00%z0,to + H1o oc + Hig o + Hig azot
COvtO (Bg)
8y{o to 8y{0.to 82y{o to
) = H H . H - H -
y(&, b § [ 00Yz0.to + H1o oc + Hio o +Hnp azot

%o,t0

whereg, tp are the coordinates of the four corners of a unit element. The same interpole
function H; (i,j = 0, 1) are used to approximate the flux within the elements. The giv
radius of the plasma boundary is represented by a Fourier series

() =) and™,
m
wheref is, e.g., the polar angle. A global coordinate system is constructed by

=f(nag(0) cog0)

. (B.10)
= f(nag(p) sin(®),
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where the radial coordinatiis an arbitrary function ranging from 0 in the centre to 1
on the boundary. By identifying the localcoordinate with the glob&r) coordinate, i.e.

¢ = ¢(f) and t withe, the values 0x/d¢, x/at, andd®x/a¢ dt can be calculated. By this
construction x and y are continuously known in the poloidal plane.

A big advantage of the isoparametric mapping is that during the iteration of the nonlin
equation (B.4) the grid of finite elements can be adjusted to the nonconverged solu
obtained so far. Adjusting the positions of the elements, such that in the converged s
tion the nodal points coincide with flux surfaces, features the mapping from the cylindri
R, ¢, Z system into flux coordinates g, ¢. From Eq. (B3.b) it is straightforward to evalu-
ate R= R(s, x) and Z= Z(s, x). In this fashion we construct numerically from Eq. (B.3b)
using a 4-point Gaussian quadrature integration along each element boundary the c
sponding derivatives foy, i.e.

dxcot0 X010 92Xc010
ac ot 7 9ot

Xz0,t0,

The determinant of the transformation is given by

axay ayod
_ XY VX (B.11)
ac ot ac ot

Then the derivatives yield

LA 1 ay oy L2
3 :

LA J\ _ax 9x Yy
3y at ac at

and correspondingly fai@ x /dx, dx /dy)T. Note that the converged solution satisfies along
a flux contourdyr/dt = 0. Then we get

E N (GRICI P

gt = 1/f2|vy 2. (B.14)

Thus

Eventually the quantitW - Vx is given by

_fawax|/ox\?, [ay\?| ayax[oxox  dydy
V“X—{%%[(a) () ]‘%ﬁ[wwﬂ}/ﬁ (619

and furthermore,
g?=1/fVy - Vy, (B.16)
ez = 1/g¥ =R?, (B.17)

72 = %mz/az + @2, (B.18)
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All quantities which depend only on the radial coordinate s are represented by cubic spl
This allows accurate evaluation at all points required in the s integration based on 4-
Gaussian quadratures. Functions which depend both on the radius and on the po
angley are represented by a Fourier—cubic spline interpolation as introduced in (A.1).
interpolation is applied to the following 16 equilibrium gquantities:

2. 0 p2. 4
R<; ZTSR’ R
& 0 2
V|2 ——; 2l V|
IV |? 9s
2 &
R2IV |2 RV |2 £R :
V- Vy; R*Vy - Vy; RV - Vyx

S(Vy -Vy)?. SRAVY -Vx)?. SRYVY - Vx)?
Vg2 Vg2 vyl

APPENDIX C: DETAILS OF THE FINITE ELEMENTS

Two orthogonal functions define a complete set of finite elements. The cubic Hermi
elements read (Ref. [26])

2 3
S—§-1 _ S—§-1
3(5,571) 2(s=,) > S§1=8S=5;
Hi(s) = §1-s )2 su-s)\ o , (C.1a)
J 3(%:11—%) _2(%:11—%) 3 =859
0, S¢ [Sj-1, S+l

Hi(s) = S5 )\2 C.1b
i (S—sq-)(%j_g), § <S<Si1, (C.1b)

0, S¢ [Sj-1, §41].

and the quadratic elements

2(5_ %-&-%71) (5—§-1) S.1<S<s,

2 (§—-§-1)2°
hi(s) = 2(5— —ﬁ“ﬁ) oS, §=s=Sa, (C.1c)
0, S [Si-1, S+l
R (5—§-1)(§—9) . .
o= P Eer o 915959 (C.1d)
0, sé¢[si-1, §].

The elements are plotted in Fig. 2. Since every finite element extends over two re
intervals a block—tridiagonal structure is induced inAh@ndB matrices in Eq. (3.25). This
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A Matrix
0
ZMA
i
i—i+l
i+1
0
2
B
1 i+1 1 i+1 1 i+1 1 i+1
1,111,211,3 1,8
1,1(1,1
3.1
1 i+1 1 i+1 %
770 |2
:
8,1 8,83

FIG.10. (a)Block-tridiagonal structure of te(andB) matrix with dimensionN= 16 x M x Ns(Ns + 1 =
number of radial points). (b) Bilinear interaction between the two orthogonal cubic finite elements per inter
The size of the blocks ZMA is Nia = 2 x 8 x M (M = number of poloidal Fourier harmonics).

block—tridiagonal form is displayed in Fig. 10, where the interaction between element j e
elementj + 1is highlighted as subblock ZMA. The-integration is performed by means
of Fourier transforms as described in Egs. (A.1-A.2). In addition, the2substructure
due to the two orthogonal finite elements in every radial interval is shown in Fig. 10 for t
eight variables. This completes the description of the matrices for the eigen problem.
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